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Capital investment decisions must recognize the limitations on the firm's 
ability to later sell or expand capacity. This paper shows how opportunities for 
future expansion or contraction can be valued as options, how their valuation 
relates to the q theory of investment, and their effect on the incentive to invest. 
Generally, the option to expand reduces the incentive to invest, while the option 
to disinvest raises it. We show how these options determine the effect of uncer- 
tainty on investment, how they are changed by shifts of the distribution of future 
profitability, and how the q-theory and option pricing approaches are related. 

INTRODUCTION 

When a firm cannot costlessly adjust its capital stock, it must 
consider future opportunities and costs when making its invest- 
ment decisions. The literature has interpreted this investment 
problem in two ways. In the q-theory approach, the firm faces 
convex costs of adjustment and, along its optimal path, equates 
the marginal valuation of a unit of capital, measured by q, with 
the marginal cost of investment.' In the irreversible investment 
literature, which uses option pricing techniques to derive and 
characterize optimal investment behavior, the firm incorporates 
future opportunities and costs that arise when capital expendi- 
tures are at least partly sunk.2 

This paper links the q-theory and option pricing approaches 
in a simple model that accounts more generally for the con- 
straints on investment that firms often face. The model reinforces 
the idea that investment decisions involve the acquisition or exer- 
cise of options, and extends it by showing that we must account 
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1. Mussa [1977] demonstrates this result in a deterministic setting, and Abel 
[1983] demonstrates it in a stochastic model. 

2. This literature began with Arrow [1968], and the option interpretation has 
been emphasized by Bertola [1988], Pindyck [1988, 1991], and Dixit [1991, 1992]; 
see Dixit and Pindyck [1994] for a survey and systematic exposition. 
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of Technology. 
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for an even broader set of options. It also shows that options need 
not always serve to delay investment. 

In our model the firm can disinvest, but the resale price of 
capital may be less than its current acquisition price, making re- 
versibility costly. Similarly, the firm can continue to invest later, 
but the future acquisition price of capital may be higher than its 
current acquisition price, making expandability costly. When fu- 
ture returns are uncertain, these features yield two options. 
When a firm installs capital that it may later resell (even at a 
loss), it acquires a put option. If the firm can purchase capital 
later (even at a price higher than the current price), it has a call 
option. These two options affect the current incentive to invest. 
We examine these features of investment and interpret them in 
two ways: using q theory, where q summarizes the incentive to 
invest, and using option pricing theory, where each of the options 
is examined separately.3 

Besides clarifying the relationship between q theory and the 
option pricing approach, we extend the latter by accounting for a 
richer set of options than in the existing literature. That litera- 
ture (see Dixit and Pindyck [1994]) emphasizes the interaction of 
(i) uncertainty over future returns to capital, (ii) irreversibility, 
and (iii) the opportunity to delay the investment. The opportunity 
to delay gives the firm a call option, whereas complete irrevers- 
ibility rules out the put option that would arise if the firm could 
disinvest. In contrast, our model accommodates an arbitrary de- 
gree of reversibility, so that in general the firm has a put option 
to sell capital. Our model also allows for an arbitrary degree of 
expandability, and we examine the value and characteristics of 
the call option that this generates.4 

The irreversible investment literature has typically empha- 
sized the forgone flow of profits as the cost of waiting to invest. 
But waiting has an additional cost if the price of capital is ex- 
pected to increase. Then expandability becomes more costly, re- 

3. Abel and Eberly [1994] combine irreversibility and convex adjustment 
costs and use a q-theoretic model to analyze optimal investment under uncer- 
tainty, but do not explore the options associated with reversibility and expandabil- 
ity described here. Abel and Eberly [1995] examine a firm's optimal investment 
decision when the acquisition price of capital exceeds its resale price. They value 
the options to purchase and sell capital in an infinite-horizon setting using par- 
ticular forms for the profit function and uncertainty facing the firm. 

4. In models with partial irreversibility, Bertola [1988], Dixit [1989a, 1989b], 
and Bentolila and Bertola [1990] show that the value function contains both a put 
and a call option. While allowing for varying degrees of reversibility, these papers 
assume complete expandability. 
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ducing the value of the call option on future acquisitions of 
capital, and increasing the current incentive to invest. Likewise, 
reversibility is costly when the resale price of capital is less than 
its purchase price. This reduces the value of the put option eassoci- 
ated with selling capital, and thereby reduces the incentive to 
invest. The net effect of reversibility and expandability on invest- 
ment depends on the values of these two options. 

Irreversibility may be important in practice because of "lem- 
ons effects," and because of capital specificity. Even if a firm can 
resell its capital to other firms, potential buyers may be subject 
to the same market conditions that induced the firm to want to 
sell in the first place. (A steel manufacturer will want to sell a 
steel plant when the steel market is depressed, but that is pre- 
cisely when no one else will want to pay a price anywhere near 
its replacement cost.) In this case, even if capital is not firm- 
specific, the combination of industry-specific capital and 
industry-specific shocks results in at least partial irreversibility 
of investment. 

In many industries the ability to expand capacity is also lim- 
ited, e.g., because of limited land, natural resource reserves, the 
need for a permit or license that is in short supply, or the prospect 
of entry by rivals.6 Hence, one of our goals is to clarify the impli- 
cations of both limited reversibility and limited expandability. 

In addition, we use both q theory and the option pricing ap- 
proach to examine the effects of changes in the probability distri- 
bution of future returns. These two approaches necessarily yield 
identical results, but they provide distinct insights into the opti- 
mal investment decision. For example, we show that an increase 
in the variance of future returns has an ambiguous effect on the 
incentive to invest, because greater uncertainty increases the 
value of the put option, which increases the incentive to invest, 
and increases the value of the call option, which decreases the 
incentive to invest. We also show that changing the probabilities 

5. More precisely, if shocks occur at a level of aggregation at least as high as 
the specificity of capital, then investment is at least partially irreversible. For 
example, if steel demand fluctuates stochastically, investments in a steel mill will 
be irreversible, but the steel company's investment in office furniture, which could 
be used in other industries, is not irreversible. 

6. We offer a simple model where all these considerations are reflected in a 
higher cost of future expansion. A more complete treatment will endogenize each 
specific consideration. See Leahy [1993] and Dixit and Pindyck [1994, Chapter 8] 
for the case of a perfectly competitive industry; Smets [1995], Baldursson [1995], 
and Dixit and Pindyck [1994, Chapter 9] for the case of an oligopolistic industry; 
and Bartolini [1993] for the case of an industrywide capacity constraint. 
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within the set of "good states" (when the firm invests) or within 
the set of "bad states" (when the firm disinvests) does not affect 
the incentive to invest. This generalizes Bernanke's [1983] "bad 
news principle" of irreversible investment to what can be thought 
of as a "Goldilocks principle": like porridge, the only news of in- 
terest is news that is neither "too hot" nor "too cold." 

The q theory of investment has a long tradition in the macro- 
economics literature. A substantial body of recent research, deriv- 
ing from financial economics and applied microeconomics and 
international trade, is based on option pricing. Therefore, it is 
important to reconcile the two, and to clarify the "value added" of 
the options approach. We offer two arguments, one conceptual 
and the other practical. 

On the conceptual side, q theory produces formulas for the 
net present value of capital, either total (equation (2) below) or 
marginal (equation (4) below). These formulas combine the ef- 
fects of all the parameters that influence the investment decision: 
uncertainty and the costliness of reversibility and expandability. 
Therefore, the formulas do not give us an understanding of ex- 
actly what is the individual contribution of each of these influ- 
ences. When one disentangles the general formula to achieve 
such understanding, the distinct terms have interpretations as 
the values of options to expand or contract in the future. 

On the practical side, managers schooled in the standard 
NPV analysis must adjust their calculations to take account of 
these options. Therefore, the options approach may help econo- 
mists better understand firms' investment decisions. 

We develop a two-period model with costly reversibility and 
expandability in Section I. The optimal value of the first-period 
capital stock is derived and interpreted using the q-theory and 
option pricing approaches, thereby illustrating the equivalence of 
the two approaches as well as the effects of costly reversibility 
and expandability. This section also analyzes the user cost of 
capital when reversibility and expandability are costly. Section 
II extends the option approach using the "option value multiple" 
emphasized in the irreversible investment literature, and a 
graphical representation of the options associated with revers- 
ibility and expandability is developed in Section III. Section IV 
examines the effects of shifts in the distribution of returns on the 
incentive to invest, and Section V discusses two extensions to our 
basic model. Our results are summarized in Section VI. 
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I. OPTIMAL INVESTMENT, REVERSIBILITY, AND EXPANDABILITY 

This section demonstrates the distinct roles played by revers- 
ibility and expandability in a dynamic model of optimal invest- 
ment under uncertainty. We use a simple, two-period framework 
that incorporates only the necessary features: second-period re- 
turns are stochastic (uncertainty); the future purchase price of 
capital may exceed its current price (costly expandability); and 
the future resale price of capital may be less than its current 
price (costly reversibility). First, we solve for the optimal first- 
period capital stock, and then we use q theory to demonstrate the 
effects of expandability and reversibility. We then show that an 
option pricing approach yields identical analytical results, but 
gives new insights into the options generated by expandability 
and reversibility. Finally, we discuss the effects of costly revers- 
ibility and costly expandability on the user cost of capital. 

In the first period the firm installs capital K1, at unit cost b, 
and receives total return r(K1), where r(K1) is strictly increasing 
and strictly concave in K1 and satisfies the Inada conditions 
limK1Or' (K,) = oo and limK1<Or'(Kl) = 0. In the second period the 
return to capital is given by R(Ke), where e is stochastic. Let RK 
(Ke) ? 0 be continuous and strictly decreasing in K and continu- 
ous and strictly increasing in e, and assume that R(Ke) satisfies 
the Inada conditions limKORK(Ke) = oo and limK RK(K,e) = 0. 
Define two critical values of e by 

(1) RK(K1,eL = bL and RK(KleH) = bH, 

where bL ' bH denotes the resale and purchase prices of capital 
in the second period, respectively. When bL < b, the resale price 
of capital is less than its current (period 1) price, and we have 
costly reversibility of investment. Similarly, when bH > b, the 
second-period purchase price of capital exceeds its current (period 
1) price, and we have costly expandability of the capital stock.7 

In the second period, after e becomes known, the capital 
stock will be adjusted to a new optimal level, which we write as 
K2(e ).8 When e > eH, it is optimal to purchase capital to the point 

7. Although we require bL < bH to rule out intraperiod arbitrage in the second 
period, we do not need to require that b is contained in the interval [bL,bH]. To 
rule out an intertemporal opportunity that would lead to infinite investment, we 
must assume that ybL < b, where y is the discount factor introduced in equation 
(2) below. 

8. The optimal value of the second-period capital stock also depends on K1, 
so that K (K ,e) is a more complete description of the optimal value of K. How- 
ever, for the sake of simpler notation, we generally suppress K1 and simpfy write 
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where the marginal return to capital equals the new higher pur- 
chase price, so K2(e) is given by RK(K2(e),e) = bH. When e < eL, 

it is optimal to sell capital to the point where the marginal re- 
turn to capital equals the resale price, so K2(e) is given by 
RK(K2(e),e) = bL. When eL < e ? eH, it is optimal to neither pur- 
chase nor sell capital, so K2(e) = K1. 

Let V(K1) denote the expected present value of net cash flow 
accruing to the firm with capital stock K1 in period 1, i.e., the 
value of the firm, 

(2) V(K1) = r(K1) + {R(K2(e),e) + bL[Kl - K2(e)]}dF(e) 

reH ? 

+ 'J R(Kl,e)dF(e) + ? JR(K2(e),e) - bH[K2(e) - K1]}dF(e), 
eL eH 

where the discount factor y is positive and less than one. The 
value of the firm is the sum of first- and second-period returns, 
where second-period returns are calculated in each of three re- 
gimes, since e may be less than eL, between eL and eH, or greater 
than eH. When e < eL, it is optimal to sell capital so that K2(e) < 
K1, and the firm's cash flow consists of the return R(K2(e),e) plus 
the proceeds from selling capital, bL[Kl - K2(e)]. When e is be- 
tween eL and eH) it is optimal to neither purchase nor sell capital 
so that K2(e) = K1, and the firm's cash flow is simply R(K1,e). 
When e > eH' it is optimal to purchase capital so that K2(e) > K1, 
and the firm's cash flow consists of the return R(K2(e),e) minus 
the cost of purchasing capital, bH[K2(e) - K1]. 

The period 1 decision problem of the firm is 

(3) maxV(K1) - bK1. 
K1 

The first-order condition for this maximization is 

reH 

(4) V'(K1) r'(Kl) + ybLF(eL) + 'Y RK(Kl,e)dF(e) 

+ ybH[1 - F(eH)] = b. 

We examine and interpret this condition in two equivalent ways 
that provide different insights. 

K2(e), except in Section IV where the more complete notation helps to avoid poten- 
tial confusion. 
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A. A q-Theory Approach 

The marginal (or shadow) value of capital in period 1, V'(K1), 
is related to Tobin's q,9 so we use q(K1) to denote this marginal 
value. Thus, equation (4) says that the optimal choice of capital 
in period 1 should equate q(Kl) to the price of that capital, b. 

Equation (4) expresses q V'(K1) as the sum of the current 
marginal return to capital, r'(K1), and the expected present value 
of the marginal return to capital in the second period, 
,ylfo RK(K2(e ),e )dF(e), where the second-period marginal return to 
capital is evaluated at the optimal level of capital in that period. 
The second-period marginal return to capital is illustrated in Fig- 
ure I. The lower flat segment of the bold line shows that for val- 
ues of e less than eL, the firm sells capital in period 2 until the 
marginal return to capital equals bL, the price the firm receives 
from selling capital in period 2. Note that the probability that e 
is less than eL is F(eL). The upper flat segment illustrates that for 
values of e greater than eH, the firm buys capital until the mar- 
ginal return to capital equals bH; the probability that e is greater 
than eH is 1 - F(eH). For values of e between eL and eH, the firm 
neither buys nor sells capital in the second period, so that the 
second-period capital stock equals K1, and the marginal return to 
capital is RK(Kl,e). 

Notice that 

(5) _a = r"(K1) + RKK(K1,e)dF(e) < 0. 

Therefore, for any given b, there is a unique value of K1 that 
equates q(K1) and b.10 

Our expression for q V'(K1) in equation (4) allows us to 
determine the effects of changes in bL and bH on the incentive to 

9. Tobin defined q as V(K1)/(bK1). This ratio is sometimes known as "average 
q" to distinguish it from "marginal q," which is V'(K,)/b. 

10. Notice that a change in K1 will change the values of eL and eH. Taking 
account of these changes while differentiating equation (4) with respect to K, 
yields 

aK r"(Ki) + yI Rj,(K1,e)dF(e) + -y[bL - RK(KleL)] dF(e dKL 
1K JeLLK 

+ y[RK(Kl'eH) - bH] dF(eH)deH b]deH d1K1' 

Observe from the definitions of eL and efH that the terms in square brackets are 
equal to zero, which yields equation (5) in the text. Similar considerations apply 
to the derivations of equations (6) and (7) below. 
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FIGURE I 

invest in the first period, and thus on the optimal value of K1. 
Partially differentiating q with respect to bL and bH, respectively, 
we obtain 

(6) aq = yF(eL) ? 0 
abL 

and 

aq_ 
(7) ab= -y[l - F(eH)] ? O. abH 

Notice that q (and hence the optimal value of Kj) is an in- 
creasing function of both the future resale price of capital bL and 
the future purchase price of capital bH. An increase in the future 
resale price of capital bL raises the floor below the second-period 
marginal return to capital (corresponding to the lower flat seg- 
ment) which increases the expected present value of marginal re- 
turns. An increase in the future purchase price of capital bH 

increases the ceiling on the future marginal return to capital (cor- 
responding to the higher flat segment) and thus increases the ex- 
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pected present value of marginal returns to capital. Thus, 
increased reversibility (higher bL) or reduced expandability 
(higher bH) increases q, the incentive to invest, and optimal 
investment. 

Equation (4) can be interpreted as a Net Present Value 
(NPV) rule. The expression for q V'(K1) in the equation is the 
NPV of the marginal return to capital from period 1 onward, ac- 
counting for the fact that in period 2 the stock of capital will 
change, and therefore the marginal return to capital will also 
change along the optimal path. Although this NPV rule is theo- 
retically correct, it is very difficult to implement in practice. For 
a manager contemplating adding a unit of capital, it requires ra- 
tional expectations of the path of the firm's marginal return to 
capital through the indefinite future. Similar difficulties confront 
an economist looking to calculate q for a firm or an aggregate of 
firms.1" Therefore, practical investment analysis as well as em- 
pirical economic research usually works with some proxy for the 
correct NPV. The most commonly used one treats the marginal 
unit of capital installed in period 1 as if the capital stock is not 
going to change again, and calculates the marginal valuation as 

(8) N(K1) r'(K1) ? RK(K1,e)dF(e). 

In contrast to the correct NPV rule given above, this can be 
called the "naive NPV rule," although it is commonly used in 
business practice. Often, a manager evaluating an investment 
project will calculate the expected present value of cash flows ac- 
cruing to the project, without taking account of future investment 
or disinvestment that might be undertaken. Sophisticated man- 
agers, however, will adjust such a calculation to take account of 
future investment by the firm, and these adjustments to the na- 
ive NPV calculation take the form of option values. We will see 
this as we turn to the option approach next. 

B. An Option Value Approach 

The difference between the correctly calculated period 1 mar- 
ginal valuation q(K1) and the commonly used but naive N(K1) 
consists precisely of the marginal call and put options, which 
arise because of the (at least partial) expandability and revers- 

11. Under certain conditions one can correctly measure q using securities 
market data; see Hayashi [1982]. 
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ibility of capital in period 2. To illustrate this, we first rewrite 
equation (2) as 

V(K1) = r(K1) + y R(Ki,e)dF(e) 

eeL 

(9) + J_ {[R(K2(e),e) - bLK2(e)] - [R(K1,e) - bLKl]}dF(e) 

+ -yf [R(K2(e),e) - bHK2(e)] - [R(K1,e) - bHKl]}dF(e), 
eH 

which we decompose according to 

(lOa) V(K1) = G(K1) + yP(K1) - -yC(K1), 

where 

(lOb) G(K1) r(K1) + yf R(Kl,e)dF(e) 

(lOc) 

P(K1) {[R(K2(e),e) - bLK2(e)] - [R(Kl,e) - bLKl]}dF(e) 

(lOd) 

C(Kf1) f-[R(K2(e),e) - bHK2(e)] + [R(K1,e) - bHKl]}dF(e). 
eH 

The term G(K1) is the expected present value of returns in 
periods 1 and 2 taking the second-period capital stock as given 
and equal to K1; that is, it is calculated under the assumption 
that the firm can neither purchase nor sell capital in period 2, so 
that K2 must equal K1. The term P(K1) is the value of the put 
option, i.e., the option to sell capital in period 2 at a price of bL, 

which the firm will choose to exercise if e < eL. The term C(K1) is 
the value of the call option, i.e., the option to buy capital in period 
2 at a price of bH, which the firm will choose to exercise if e > eH. 

The optimal amount of capital in period 1 depends on a com- 
parison of the marginal costs and marginal benefits associated 
with investment. Recalling that q(Kl) is the marginal valuation 
of capital, V'(K1), which summarizes the incentive to invest, and 
differentiating equation (10) with respect to K1 we obtain 

(lla) q = N(K1) + yP'(K1) - YC (Ki), 

where 



OPTIONS, CAPITAL, AND INVESTMENT 763 

(lib) N(K1) G'(K1) = r'(Kl) + ? J RK(Kl,e)dF(e) > 0 

reL 

(lie) P'(K1) [bL - RK(Kl,e)]dF(e) - 0 

(lid) C'(K1) f '[RK(Kl,e) - bH]dF(e) 2 0. 
eH 

Equation (h1a) separates q into three components. The first 
is the expected present value of the marginal returns to capital 
evaluated at the first-period capital stock K1, assuming that the 
capital stock remains constant at this level in the future. This is 
just equation (8), which we earlier labeled the naive NPV. The 
second component is the value of the marginal put option, P'(K1), 
which equals E{max[bL - RK(Kl,e),O]}. Finally, the third compo- 
nent is the value of the marginal call option, C'(K1), which equals 
Etmax[RK(Kl,e) - bH,0]}.12 This call option is subtracted from 
N(K1) because investing extinguishes the option. 

The optimality condition for the first-period capital stock is 
still q(K1) = b, which can be rewritten as 

(12) N(K1) = b - yP'(K1) + -yC'(K1). 

Recall that the left-hand side of this equation is the expected 
present value of current and future marginal returns to capital, 
evaluated along a path that takes the capital stock as given and 
therefore does not take account of future purchases or sales of 
capital.13 This is exactly the naive NPV, N(K1), which we dis- 
cussed above. A manager who ignored the option value compo- 
nents P'(K1) and C'(K1) would choose K1 to equate N(K1) to the 
cost of purchasing capital, b, and would not correctly calculate 

12. In general, there are many ways to use derivative securities such as op- 
tions to replicate payoffs. Equivalently, the relationship between RK(Kl,e) and the 
second-period marginal return to capital illustrated in Figure I corresponds to a 
"bullish vertical spread" on RK(Kl,e), as described in Cox and Rubinstein [1985, 
p. 14, Figure 1-13]. This payoff structure can be obtained by purchasing a call 
option on R (K e) with strike price bL, and writing (selling) a call option on 
RK(Kl,e) with stlrike price bH. However, in the context of capital investment, it 
seems most natural to represent this payoff structure as a claim on RK(Kl,e) plus 
a (marginal) put option minus a (marginal) call option. 

13. N(K1) G'(K1) corresponds to Pindyck's, "AV(K), the present value of 
the expected flow of incremental profits attributable to the K + 1st unit of capital, 
which is independent of how much capital the firm has in the future" [1988, p. 
972, footnote 6]. Optimal behavior sets AV(K) equal to a corrected cost of capital, 
which includes the opportunity cost of exercising the marginal call option. (In 
Pindyck's formulation investment is irreversible, so there is no marginal put 
option.) 
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the optimal value of K1. If the naive NPV calculation is being 
used, then K1 will be chosen optimally only if the cost of capital 
is adjusted as on the right-hand side of equation (12). Purchasing 
an additional unit of capital in period 1 extinguishes the mar- 
ginal call option to purchase that unit of capital in period 2, and 
the present value of the cost of extinguishing this option, -yC'(K1), 
must be added to b. On the other hand, by purchasing an addi- 
tional unit of capital in period 1, the firm acquires a put option 
to sell that unit of capital at price bL in period 2. The acquisition 
of this marginal put option reduces the effective cost of invest- 
ment by GyP'(K1). 

The effect of a change in the sale price of capital on the value 
of the marginal put option is easily calculated by differentiating 
the value of this option with respect to bL to obtain 

(13) aP'(K') = F(eL ) ? 0. 

Increasing the price at which capital can be sold in the future 
raises the value of the marginal put option to sell capital, and 
thus reduces the effective cost of capital and increases the opti- 
mal value of K1. 

Differentiating the value of the marginal call option with re- 
spect to the purchase price bH yields 

(14) aC'(K1) - -[1 - F(eH)] c 0. 
abH 

Increasing the price at which capital can be purchased in the fu- 
ture reduces the value of the marginal call option that is extin- 
guished and therefore reduces the effective cost of investment. As 
a result, the optimal value of K1 increases in response to an in- 
crease in bH. Of course, these results obtained using the option 
value approach are identical to the results obtained using the 
q-theory approach. 

C. Relation to User Cost of Capital 

We now examine how Jorgenson's [1963] user cost of capital 
can be modified to account for costly reversibility and expandabil- 
ity, and we relate this concept of the user cost to the approaches 
discussed above. 

In the case in which the future purchase and sale prices of 
capital are equal, which is the case analyzed by Jorgenson, the 
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user cost of capital, u, equals b - -yb*, where b* is the common 
value of bL and bH in the second period. More generally, b* is to 
be interpreted as the expected value of the shadow price of capital 
in period 2 (see the discussion in Abel and Eberly [1995]), al- 
though in Jorgenson's case the shadow price and the actual pur- 
chase and sale prices are all equal. To calculate the expected 
value of the second-period shadow price of capital, note that re- 
gardless of whether the future purchase and sale prices are equal 
to each other, the future shadow price of capital in our two-period 
model equals the future marginal return to capital. Thus, the ex- 
pected value of this shadow price is 

reH 

(15) b* = bLF(eL) + f RK(Kl,e)dF(e) + bH[1 - F(eH)]. 
eL 

Substituting equation (15) into the definition of the user cost, 
u b - yb*, yields 

reH 

(16) u = b - y[bLF(eL) + f RK(Kl,e)dF(e) + bH[1 - F(eH)]]. 
eL 

It follows from equation (16) and the first-order condition in 
equation (4) that r'(K1) = u. That is, even with limited expand- 
ability and reversibility, optimal investment is characterized by 
the equality of the current marginal return to capital and an ap- 
propriately modified Jorgensonian user cost of capital. 

Another way to relate the user cost of capital to costly revers- 
ibility and expandability is to subtract and add yb on the right- 
hand side of equation (16) to obtain 

(17) u = b(l - y) + y[(b - bL)F(eL) 
reH 

+ J [b - RK(Kl,e)]dF(e) - (bH - b)[1 - F(eH)]]. 
eL 

The term in square brackets on the right-hand side of equa- 
tion (17) is the amount (up to a multiplicative factor -y) by which 
the appropriately modified user cost of capital exceeds the user 
cost that would apply in the standard case of complete reversibil- 
ity and complete expandability studied by Jorgenson. If this term 
is positive, then the user cost exceeds the standard Jorgensonian 
value, and the optimal value of K1 will be smaller than indicated 
by the Jorgensonian user cost. Of course, if this term is negative, 
the optimal value of K1 will be greater than indicated by the Jor- 
gensonian user cost. Notice that the first term in square brackets, 
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(b - bL)F(eL), is the expected value of the capital loss that would 
be suffered if the capital stock is sold in the second period. This 
term is positive if reversibility is costly, and thus it tends to in- 
crease the user cost and reduce the optimal value of K1 relative 
to the Jorgensonian case. The third term in square brackets, (bH 
- b)[1 - F(eH)], is the expected value of the cost of future expan- 
sion. Because this term is positive when expandability is costly, 
and is subtracted from the user cost, it reduces the user cost and 
therefore increases the optimal value of K1 relative to the Jorgen- 
sonian case. The second term, J_[b - RK(Kl,e)]dF(e), is the ex- 
pected "mismatch" due to inertia in the second-period decision; 
its sign is in general ambiguous. 

II. THE OPTION VALUE MULTIPLE 

The literature on irreversible investment has emphasized 
that optimal behavior is not in general characterized by the 
equality of the expected present value of marginal returns repre- 
sented by N(K1) and the marginal cost of investment represented 
by b. Thus, a naive application of the NPV rule in which K1 is 
determined by the equality of N(K1) and b would not lead to the 
optimal value of K1. (Of course, a correct application of the NPV 
rule equating q(K1) and b yields the optimal value of K1.) In the 
case of irreversible investment, the put option is absent, and 
thus, at the optimal K1, N(K1) exceeds b by -yC'(K1), the present 
value of the marginal call option. The ratio of N(K1) to b, which 
exceeds one in this case, is the "option value multiple" [Dixit and 
Pindyck 1994, p. 184]. Here we generalize the notion of the option 
value multiple to include arbitrary degrees of reversibility and 
expandability.14 

Define the option value multiple 4) as 

(18) N(K1)Ib, 

where K1 is the optimal capital stock in period 1. Substituting the 
optimality condition from equation (12) into the definition of the 
option value multiple, we obtain 

(19) + = 1 + y [(C'(K1) - P'(K1))Ib]I 

14. Since disinvestment may occur in an extension of our model (see Section 
V), there is an option value multiple associated with the decision to disinvest, as 
well as with the decision to invest. We focus on the option value multiple associ- 
ated with the investment decision in order to compare our results with those in 
the existing literature. 
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By definition, the optimal value of K1 is chosen to satisfy 
N(K1) = + b. We will examine how the option value multiple de- 
pends on the degrees of reversibility and expandability in the sec- 
ond period. We scale reversibility and expandability using the 
two definitions: ZL bLIb and zH = blbH, and write the option 
value multiple as 4(Kl;ZLZH) to emphasize the dependence of the 
option value multiple on the price ratios ZL and ZH as well as on 
the optimal level of the first-period capital stock K1. 

First, consider the extreme case in which the capital stock 
is completely irreversible (bL = 0) and completely unexpandable 
(infinite bH) in the second period, which implies that ZL = ZH = 0. 

In this case, both the put option and the call option have zero 
value because it is impossible to either sell or buy capital in the 
second period. Therefore, 4(K1;O,O) = 1. 

Now consider the case in which the capital stock is com- 
pletely irreversible (bL = 0) but is at least partially expandable 
(finite bH) in the second period. This implies that ZL = 0 and ZH > 

0. In this case, the put option still has zero value, but the mar- 
ginal call option will have positive value provided that F(eH) < 1. 
Therefore, we have 4(Kl;0,ZH) 2 1 with strict inequality if F(eH) 

< 1. This finding is consistent with the literature on irreversible 
investment which emphasizes that the option value multiple is 
greater than one, and thus the optimal value of the capital stock 
is lower than would be obtained by a naive (and incorrect) appli- 
cation of the NPV rule. It is important to note, however, that the 
option value multiple exceeds one because of the marginal call 
option associated with expandability, not solely because of irre- 
versibility. Irreversibility eliminates the put option, while ex- 
pandability generates the call option. Both features are needed 
to produce an option value multiple that unambiguously exceeds 
one. Indeed, recall the previous case in which investment is irre- 
versible and the option value multiple equals one (because of the 
absence of expandability). 

The option value multiple can also be less than one. Consider 
the case in which investment is at least partially reversible (bL > 

0) but is completely unexpandable (infinite bH) in the second pe- 
riod, which implies that zL> 0 and ZH = 0. With partially revers- 
ible investment the put option has positive value provided that 
F(eL) > 0. With completely unexpandable investment the call op- 
tion has zero value. Therefore, we have 4(Kl;ZLO) c 1 with strict 
inequality if F(eL) > 0. In this case, capital may be sold at a posi- 
tive price, but no additional capital may be purchased at a finite 
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price. The firm is therefore more willing to invest initially than a 
naive application of the NPV rule would indicate. Note that the 
presence of at least partial reversibility is necessary for this re- 
sult; the absence of expandability alone is not sufficient. 

Finally, consider the special case of complete reversibility 
(bL = b) and complete expandability (bH = b) which implies that 
ZL = ZH = 1. In this case, the excess of the value of the marginal 
put option over the value of the marginal call option, P'(K1) - 
C'(K1), equals b - E{RK(Kl,e)} so that 4)(K1;1,1) = 1 - y(l - 
E{RK(Kl,e)}/b). Therefore, 4(Kj;1,1) could be greater than, equal 
to, or less than one, depending on whether the value of the mar- 
ginal put option is less than, equal to, or greater than the value 
of the marginal call option. 

The relationship between 4 and the degrees of expandability 
and reversibility is illustrated in Figure II which shows various 
"iso-4" loci. These loci are derived by totally differentiating the 
expression for 4 in equation (19) to obtain 

ly [aP'(Kl)abLd aC'(Kl) abd 

(20) d= b MbL azL abH a zH 

+ (P"(K1) - C"(Ki))dKil 

and then setting d4 = 0. Observe from the definition of 4 in equa- 
tion (18) that given b and the distribution of e, changes in the 
values of zL and ZH will leave the value of 4 unchanged if and only 
if they leave the optimal value of K1 unchanged. Setting d4 = 

dK1 = 0 in the above expression yields 

(21) dzH = Z2 F(eL) 
(21) ~~~dzL d,4O = Z H 1 - F(eH) 

2 0 with strict inequality when F(eL)> 0 and bH < ??* 

Thus, the iso-4 loci slope upward from left to right as illustrated 
in Figure II. (The convexity or concavity of these curves is in gen- 
eral indeterminate.) The value of 4 is increasing in ZH and de- 
creasing in ZL. The locus 4 = 1 passes through the point ZL = ZH = 

0 because 4(K1;0,0) = 1 as explained earlier. This locus may pass 
above, through, or below the upper right corner of the unit square 
depending on whether 4(K1;1,1) is less than, equal to, or greater 
than one. 
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III. GRAPHICAL ILLUSTRATION OF THE PUT AND CALL OPTIONS 

Define the period 2 marginal return to period 1 installed 
capital as 

(22) x -RK(Kl,e). 

Given K1, the distribution of e induces a distribution on x. Let 
W(x) be the cumulative distribution function induced by F(e) and 

use integration by parts to obtain expressions for the marginal 
put and marginal call options, respectively, 
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r eL r ~~~~~~bL 
(23) P'(K1) [bL - RK(Kl,e)]dF(e) = [bL - x]dD(x) 

bL rbL bL 

=[bL - x]N(x) + fb (x)dx = (x)dx; 
0 

and similarly, 

(24) C'(K1) [RK(Kl,e) - bH]dF(e) = f[x - bH]dF(x) 

= [x - bH]I[((x) - 1] H- f [(x) - 1]dx = f[1 - W(x)]dx. 
bH Hb 

The value of the marginal put option is equal to the area under 
the lower tail of the cumulative distribution function, W(x), to the 
left of x = bL, as shown in Figure III. Notice that an increase in 
the sale price bL increases this area-illustrating the correspond- 
ing increase in the value of the marginal put option we demon- 
strated analytically in equation (13). Similarly, the value of the 
marginal call option is equal to the area to the right of x = bH 

between the upper tail of the cumulative distribution and the ho- 
rizontal line with unit height. An increase in the purchase price 
of capital bH reduces this area-illustrating the reduction in the 
value of the marginal call option we found earlier in equation 
(14). 

IV. THE DISTRIBUTION OF FUTURE RETURNS AND THE 
INCENTIVE TO INVEST 

In this section we analyze the effects of changes in the distri- 
bution of future shocks, namely shifts of the distribution function 
F(e), on the incentive to invest. While such shifts are often ana- 
lyzed by parameterizing the distribution in terms of its moments 
and then doing comparative statics with respect to these parame- 
ters, here it is easier to use the concept of stochastic dominance. 
(See Hirshleifer and Riley [1992, pp. 105-16] for a discussion.) 

Begin with a first-order increase in the distributions of e and 
x which is represented by a rightward shift of the c.d.f.'s of e and 
x. This raises the mean of x, and therefore the naive NPV, N(K1). 
This by itself increases the incentive to invest, but may be offset 
by changes in the values of the associated options. From Figure 
III we can visualize that a rightward shift in the cumulative dis- 
tribution function will reduce the shaded area in the bottom left 
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corner (the value of the marginal put option) and increase the 
shaded area in the top right corner (the value of the marginal call 
option). Both these effects act to lower the incentive to invest. 
Therefore, the option approach does not give a clear answer to 
the question of the balance of the effects on N(K1) and the option 
values. One would have to determine the magnitudes of the ef- 
fects that work in opposite directions. 

The q approach gives a clear answer. In Figure I the function 
shown by the heavy line is RK(K2(Kl,e),e), the second-period mar- 
ginal return to capital evaluated at the optimal second-period 
capital stock. Call this function M(K1,e). Observe that M(Kl,e) is 
strictly increasing in the range (eLeH), and takes on constant val- 
ues to the left of eL and to the right of eH. Now equation (4) can be 
written as 

(25) q(Kl) r'(Kl) + y M(K1,e)dF(e) = b. 

This shows that q(Kl) is the expected value of a nondecreas- 
ing function of e. Therefore, a first-order shift to the right in the 
distribution of e cannot lower this expected value. The incentive 
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to invest in period 1 is not lowered on balance. Moreover, the 
function M(K1,e) is strictly increasing in e in the range (eL,eH), 

and takes on constant values to the left of eL and to the right of 
eH. Unless the shift of the distribution is confined entirely to the 
ranges (-ooeL] and [eH,oo), the incentive to invest is actually 
increased. 

The qualification about shifts restricted to these extreme 
ranges has independent interest. An inspection of equation (4) or 
(25) shows that q(Kl) is affected by the cumulative probabilities 
F(eL) to the left of eL and [1 - F(eH)] to the right of eH, but it is 
not affected by any details of the probability densities in these 
separate ranges. If a little probability weight shifts from a point 
just to the right of eH to another point farther to the right (some 
good news becomes better news) or vice versa, the value of 
q(K1), and therefore the incentive to invest, will remain un- 
changed. Similarly for any shifts of probability densities confined 
to the left of eL: if bad news becomes even worse, that has no 
effect on the incentive to invest. Details of the probability density 
function matter only in the middle range (eLeH). 

The "tail-events" do not matter because a value of e in either 
tail induces the firm to buy or sell capital to mitigate the effect of 
such extreme realizations. A realization of e in the lower tail will 
induce the firm to sell capital and prevent the marginal return 
from falling below bL. A realization of e in the upper tail will in- 
duce the firm to purchase capital and prevent the marginal re- 
turn from rising above bH. 

This is an extension of Bernanke's [1983] "bad-news prin- 
ciple," which applies in the case of completely irreversible invest- 
ment. (See also the exposition in Dixit [1992, p. 118].) In this case 
eL = -00, and F(eL) = 0. Therefore, there is no lower tail of e where 
M is constant, so all of the details of the probability distribution 
in this "bad news" region affect the incentive to invest. However, 
in this case there is also complete expandability (bH = b), so for 
any realization of e above eH, the firm will expand its capital stock 
and set the marginal product of capital equal to its price. The 
probability mass [1 - F(eH)] could be rearranged arbitrarily in 
the region e > eH without affecting the current incentive to invest. 
Together, these results produce Bernanke's "bad-news principle," 
since the upper tail of realizations of e does not affect the incen- 
tive to invest, but the lower tail (the "bad news") does. In our 
more general model, there is a range of low values of e that will 
lead to disinvestment in period 2, so the probability mass F(eL) 
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could be rearranged arbitrarily in the region below eL without af- 
fecting the incentive to invest. 

In a model that is the mirror-image of Bernanke's, invest- 
ment is completely unexpandable (bH = oo), so there will be no 
upper tail where M is constant. Then the details of the probability 
distribution throughout the "good news" region will affect the in- 
centive to invest, and we will have a "good-news principle." Most 
generally, for partially expandable and partially reversible in- 
vestments, we have a "Goldilocks principle." The only region of 
the probability distribution of e that affects the incentive to invest 
is the intermediate part where news is neither "too hot" nor "too 
cold." 

Finally, consider a second-order shift-a mean-preserving 
spread-in the distribution of e. Such a shift has an ambiguous 
effect on the naive NPV given by equation (8). This shift increases 
(decreases) the naive NPV if RK(Kl,e) is a convex (concave) func- 
tion of e. See Dixit and Pindyck [1994, pp. 199, 371-72] for more 
on this issue. How does this shift affect the values of the two 
options? In Figure III a mean-preserving spread in e twists the 
distribution of x clockwise (although the mean of x may not be 
preserved). Provided that the point of crossing between the old 
and the new distributions lies between bL and bH, this will in- 
crease both shaded areas, that is, the values of both the marginal 
call and marginal put options. Since the marginal call option de- 
creases the incentive to invest and the marginal put option in- 
creases it, the net effect on the incentive to invest in period 1 will 
be ambiguous. The alternative approach based on q cannot re- 
solve the ambiguity. 

V. EXTENSIONS 

The two-period model presented in this paper was designed 
to be as simple as possible to clearly illustrate the distinctive as- 
pects of the q-theory and option approaches. In this section we 
discuss two extensions to this model while remaining within a 
two-period framework. 

A. Disinvestment 

So far we have confined attention to cases in which the opti- 
mal rate of investment in the first period is positive. However, an 
ongoing firm enters each period with a capital stock comprised of 
the undepreciated portions of previous investment. If the capital 



774 QUARTERLY JOURNAL OF ECONOMICS 

stock at the beginning of a period is sufficiently high, then disin- 
vestment, i.e., a negative rate of investment, may be optimal. 

To extend our model to allow for the possibility of disinvest- 
ment in the first period, suppose that the firm has an initial capi- 
tal stock K0 at the beginning of period 1. Then the first-period 
decision problem in equation (3) is modified to 

(26) 
max[V(K1) - blHg max(Kl - K0,O) - blL min(K1 - KO,0)], 

K, 

where blH and b ,L are the purchase and sale prices of capital in 
the first period, and the value function V(K1) is the same as de- 
fined in equation (2). In this case the optimal value of K1 is char- 
acterized by 

(27a) V'(K1) = blH if V'(KO) > blH 

(27b) V'(K1) = blL if V (KO) < bl,L 

(27c) K1 = Ko if blL ' V'(Ko) ? blH. 

If Ko is sufficiently small, then V'(KO) > blH. In this case, 
optimal first-period investment is positive and is characterized 
by equation (27a) which is equivalent to equation (4) with b = 
bl H- Alternatively, if Ko is sufficiently large, then V'(KO) < bl". 
In this case, the optimal rate of investment is negative and is 
characterized by equation (27b). The same sorts of q-theoretic 
and option interpretations apply to this case with disinvestment 
in the first period as to the case discussed in previous sections 
with positive investment in the first period.15 

B. Industrywide Shocks 

If the shock e is industrywide,16 the prices bL and bH are in- 
creasing functions of e. For instance, a high realization of the 
shock e indicates that the marginal return to capital is high for 
all firms in the industry, and thus the industry demand for capi- 
tal is relatively high. Therefore, the prices of capital bL and bH 

will tend to be high when e is high. 

15. In this more general model the degree of expandability is measured by 
ZH = V'(Kl)/bH, and the degree of reversibility is measured by ZL = bL/V'(Kl). 
If V'(KO) > b1,H, it is optimal to purchase capital in the first period, and zH =blJ/ 

bH and ZL = bjblH. If V'(K0) < blL, it is optimal to sell capital in the first period, 
and ZH = bL/bH and ZL = bJblL. If blL - V'(KO) < blH, it is optimal to neither 
purchase nor sell capital in the first period, and ZH = V'(KO)/bH and ZL = bJV'(K0). 

16. In a different context Shleifer and Vishny [1992] discuss possible effects 
of industrywide shocks on the liquidation value of capital. 
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If the prices of capital, bL and bH, are increasing functions of 
e, the expressions in equation (1) that define critical values of e 
may not yield unique solutions. However, if the dependence of bL 

and bH on e is sufficiently weak-as would be the case if there 
were a substantial firm-specific component to the shock-the 
functions17 bL(e) and bH(e) will be flatter than the marginal re- 
turn function RK(Kl,e), and the expressions in equation (1) will 
have unique solutions. 

Suppose that there is a substantial firm-specific component 
to the shock e so that the expressions in equation (1) yield unique 
values for the critical values eL and eH. Taking account of the de- 
pendence of bL and bH on the shock e, the first-order condition in 
equation (4) must be rewritten as 

Yf:LeL d~e + ,eHRKdF) 

(28) V'(K1) = r'(K1) + fy bL(LdF(e) + y R(Ke)dF(eL 

+ y I bH(e)dF(e) = b. 

Notice in equation (28) that the details of the distribution 
within the "good news" region matter, and the details of the dis- 
tribution within the "bad news" region also matter. That is, the 
Goldilocks principle no longer applies. Nevertheless, the option- 
theoretic interpretation discussed in earlier sections still applies. 

VI. CONCLUDING REMARKS 

The irreversible investment literature emphasizes that the 
value of a firm is determined in part by its options to invest. We 
have shown more generally how the incentive to invest, summa- 
rized by q, can be decomposed into the returns to existing capital, 
ignoring the possibility of future investment and disinvestment, 
and the marginal value of the options to invest and disinvest. The 
option to invest (the call option) arises from the expandability of 
the capital stock, while the option to disinvest (the put option) 
arises from the reversibility of investment. The call option re- 
duces the firm's incentive to invest; while it adds to the firm's 
value, it is extinguished by investment. The put option increases 
the incentive to invest, since it is by investing that the firm ac- 
quires this option. 

17. Of course, these functions need to be derived endogenously. 
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The interaction of these options determines the net effect of 
expandability and reversibility, and the net effect of uncertainty, 
on q and on the optimal capital stock. Since the values of both 
options rise with uncertainty, and the two options have opposing 
effects on the incentive to invest, the net effect of uncertainty 
is ambiguous. The effect of changes in the distribution of future 
returns is characterized by the Goldilocks principle: the incentive 
to invest is unaffected by changes within the upper tail (where 
news is "too hot") and by changes within the lower tail (where 
news is "too cold"). Only changes within the intermediate range 
of the distribution (where the news is "just right") affect the in- 
centive to invest. 

Finally, we have shown precisely how the usual naive appli- 
cation of the NPV rule fails to characterize optimal behavior. The 
naive NPV rule evaluates future marginal returns to capital at 
the current level of the capital stock, rather than at the future 
optimal levels. To obtain the correct value of the optimal capital 
stock, the calculation requires an adjustment that is captured by 
the option value multiple, which may be greater than, equal to, 
or less than one. Alternatively, one can apply the NPV rule (with- 
out an option value multiple) to determine the optimal value of 
the capital stock if care is taken to evaluate future marginal re- 
turns to capital at the future optimal levels of the capital stock, 
as in the q-theory approach. Both the option value approach and 
the q-theory approach will correctly characterize optimal behav- 
ior, yet each offers its own set of distinctive insights about the 
investment decision. 
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